Avoid These 8 Common Errors in Sheet Metal Fabrication
This is probably the most basic issue we see. Sheet metal is flat and must be bent, formed, cut, lased, and sometimes cajoled into its final shape. It’s a very hands-on process. If you design your sheet metal part as a solid object, it’s important that you send us a CAD file that appears folded, but shows where bends should go. Related to this, because the raw materials are single sheets of metal, the entire part must have the same material thickness throughout. For example, if you create a part that uses 0.125 in. (3.175mm) thick aluminum, your entire part will need to be that same thickness.
A quick way to create difficulties during manufacturing is to place holes, tabs, or other features too close to a bend. So, how close can you get? Just follow the 4T rule. Keep all features at least 4x material thickness away from bend lines. So, if your design tells us to use 0.050 in. (1.27mm) copper, give your feature at least 0.200 in. (5.08mm) of clearance. If you don’t, the part will deform awkwardly in the press brake, and no one wants that.
When you bend sheet metal in a press brake, the resulting bend doesn’t form a perfect 90-degree angle. Instead, the tool has a rounded tip that adds a radius to the bend. If you measure the length of that bent area and divide it by two, you’ll get the bend radius, a figure that is defined by the tool that made it. If the size of that curve is important to you, make sure you specify it in your model.
The most common internal bend radius (and our default) is 0.030 in. (0.762mm). An important consideration to remember is that the external bend radius—the one formed on the die side of the press brake toolset—is equal to the material thickness plus the internal bend radius.
Some designers like to get fancy and create different radii for each bend in a part. Want to save some money? Use the same radius for all of the bends. When your manufacturer doesn’t have to change tooling that saves you on labor costs.